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ABSTRACT Dry eye disease (DED), amultifactorial disease of
the tears and ocular surface, is common and has a significant
impact on quality of life. Reduced aqueous tear flow and/or
increased evaporation of the aqueous tear phase leads to tear
hyperosmolarity, a key step in the vicious circle of DED pa-
thology. Tear hyperosmolarity gives rise to morphological
changes such as apoptosis of cells of the conjunctiva and
cornea, and triggers inflammatory cascades that contribute to
further cell death, including loss of mucin-producing goblet
cells. This exacerbates tear film instability and drives the cycle
of events that perpetuate the condition. Traditional ap-
proaches to counteracting tear hyperosmolarity in DED
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include use of hypotonic tear substitutes, which have rela-
tively short persistence in the eye. More recent attempts to
counteract tear hyperosmolarity in DED have included
osmoprotectants, small organic molecules that are used in
many cell types throughout the natural world to restore cell
volume and stabilize protein function, allowing adaptation to
hyperosmolarity. There is now an expanding pool of clinical
data on the efficacy of DED therapies that include osmopro-
tectants such as erythritol, taurine, trehalose and L-carnitine.
Osmoprotectants in DED may directly protect cells against
hyperosmolarity and thereby promote exit from the vicious
circle of DED physiopathology.
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I. INTRODUCTION
D ry eye disease (DED) is defined in the International
Dry Eye Workshop (DEWS) report as “a multifac-
torial disease of the tears and ocular surface that

results in symptoms of discomfort, visual disturbance, and
tear film instability with potential damage to the ocular
surface. It is accompanied by increased osmolarity of the
tear film and inflammation of the ocular surface.”1 It is
characterized by symptoms of eye irritation, blurred and
fluctuating vision, tear film instability, increased tear
osmolarity and impairment of ocular surface epithelia.2

Epidemiological studies conducted in the general population
have demonstrated that DED is a relatively common condi-
tion, with a prevalence of 5-34%, depending on the criteria
for DED applied, the population studied, and geographic
location.3-9 DED has a significant negative impact on quality
of life due to chronic irritation and pain,10 which can have
a negative impact on visual performance and ability to
perform daily tasks (eg, reading, driving).11 These detri-
mental effects on functioning may lead to anxiety and
depression.12

The ocular surface is highly exposed, and efficient tear
production and turnover is essential for its continued health.
The tear film, lacrimal glands (main and accessory lacrimal
glands, meibomian glands, goblet cells, and all ocular surface
secretory cells), lacrimal outflow pathways, and corneal and
conjunctival epithelia work together as a lacrimal functional
unit (LFU) to maintain the tear film and protect the trans-
parency of the cornea and the integrity of the ocular
surface.13,14 The LFU is not an isolated system and is
affected by many factors, such as nerve connections and
hormones. Disease or damage to any component of the
THE OCULAR SURFACE / OCTOBER 2013, VO
LFU (eg, the afferent sensory nerves, the efferent autonomic
and motor nerves, and the tear-secreting glands) can desta-
bilize the tear film and lead to ocular surface disease that
expresses itself as DED. It is therefore not simply a lack of
tears, but a complex ocular surface disease in which the
tear film is unbalanced and no longer provides sufficient
nourishment or protection to the ocular surface (reviewed
in 2007 Report of the International Dry Eye Workshop
[DEWS]1). This can lead to an imbalance in electrolytes,
proteins and mucins and permanent damage to the corneal
and conjunctival epithelial cells and the corneal nerve fibers
that trigger secretion.

Figure 1 illustrates the concept of the vicious circle that
may contribute to the pathophysiology of DED.15 Risk
factors or causative factors are shown on the outside of
the circle; internal pathologic mechanisms are on the inside.
The external causative factors are independent or interacting
processes that may lead to entry into the circle; any form of
DED can interact with and exacerbate other forms. The
internal pathologic mechanisms also interact, as activity in
one area exacerbates another process.

At the top of the figure, tear film instability/imbalance
refers to an abnormally rapid breakup of the tear film after
blinking, caused when interactions of the stabilizing tear
film constituents are compromised by decreased tear secre-
tion, delayed clearance, or altered tear composition.1 This
leads to local drying and hyperosmolarity of the exposed
surface, surface epithelial damage, and disturbance of the
glycocalyx and goblet cell mucins. Tear hyperosmolarity is
one of the central events in the vicious circle of DED and
refers to a state in which the osmolarity of the tear exceeds
that of the epithelial cell, leading to reduced cell volume and
increased concentration of solutes. As seen in Figure 1, tear
hyperosmolarity stimulates death of the epithelial surface
cells and a cascade of inflammatory events, which lead to
loss of mucin-producing goblet cells. This exacerbates the
tear film instability and contributes to the circle of events
that perpetuate DED.

DED may be regarded as an inability of the eye to adapt
to a challenging environment.14 Epithelial cells exposed to
tear hyperosmolarity face similar challenges to many
different cell types in the natural world that must survive
in hyperosmotic environments. Many cells are able to with-
stand such hyperosmotic stresses through osmoregulation. It
is possible that examining osmoregulation in other cell types
may enhance our understanding and treatment of DED.
Indeed, osmoprotective topical treatments designed specif-
ically to address hyperosmolarity are now emerging. The
purpose of this review is to discuss osmoregulation in
nature, explore the role of hyperosmolarity in DED, and
consider the role of osmoprotective therapies in counteract-
ing and protecting against hyperosmolarity.

A meeting was held in Nice, France, on 14-15 December
2012 by the OCEAN group to discuss the role of hyper-
osmolarity in the pathogenesis of dry eye disease. The
name OCEAN was chosen because of its theme of salinity,
reflecting the panel’s focus on hyperosmolarity as a key
L. 11 NO. 4 / www.theocularsurface.com 247
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Figure 1. Proposed schema of the vicious
circle theory for DED pathology, adapted
from Baudouin.15 MMP: matrix metal-
loproteinase. LPS: lipopolysaccharide. MGD:
meibomian gland dysfunction.
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pathogenic mechanism in DED, and osmoprotection as a
potential therapeutic strategy. A consensus was reached by
the expert committee and the findings are presented in
this review.

II. OSMOREGULATION AS A PHYSIOLOGICAL SYSTEM
As mentioned above, hyperosmolarity leads to reduced

cell volume and increased concentration of solutes. This in
turn causes oxidative stress and disruption of DNA repair
systems and thereby causes DNA damage and cell cycle
arrest.16 If the cell is unable to protect itself, pro-apoptotic
signaling is upregulated and the cell exhibits classical
features of apoptosis, including DNA condensation and
mitochondrial dysfunction.17,18 Cell volume decrease is a
characteristic early event in apoptosis, even in cells not
subject to hyperosmotic stress.

Cellular processes, such as metabolism, protein folding,
and intracellular transport, require the cell to maintain a
relatively stable osmotic pressure. This stability may be
challenged by the cell’s environment: indeed, life can be
seen as “a thing of macromolecular cohesion in salty
water.”19 This “salty water” may be the ocean (for marine
invertebrates), a salt lake (for the brine shrimp), the extra-
cellular fluid (for cells of the kidney medulla or brain) or
the tears (for ocular epithelial cells).20 In many cases, the
cell can protect itself through homeostatic mechanisms.
248 THE OCULAR SURFACE / OCTOBER 2013
In most cells, the first response to hyperosmolarity is reg-
ulatory volume increase, in which electrolytes (inorganic
ions) and water are taken up. Although this inhibits expres-
sion of many genes and protein synthesis, DNA damage
response proteins (eg, p53 and heat shock proteins) are acti-
vated and will promote survival.20 Increased concentrations
of inorganic ions, however, can only be a temporary measure,
as they can disrupt protein structure and function. For
example, in bluefin tuna, high levels of KCl and NaCl nega-
tively affect participation of nicotinamide adenine dinucleo-
tide (NADH) in the lactate dehydrogenase (LDH) reaction.22

In many cell types, a later stage of adaptation to hyper-
osmolarity occurs, and this can be referred to as osmoprotec-
tion. No specific mammalian osmosensor has yet been
identified. It is possible that none exists and, instead, the
cellular response to changes such as the decrease in cell
volume, macromolecular crowding, and increased concen-
tration of inorganic ions is achieved by means of pathway
signals conserved throughout evolution.21 Research suggests
that a focal adhesion protein called tensin-1 responds to
changes in cell shape23 and activates a signaling cascade
mediated by a heteromeric protein complex that includes
Rho-type small G-proteins and protein kinases, including
mitogen-activated protein kinase (MAPK)14 (reviewed by
Brocker et al, 2012).24 These signaling cascades activate
tonicity-responsive element binding protein (TonEBP) or
, VOL. 11 NO. 4 / www.theocularsurface.com
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NFAT5, a transcription factor that upregulates genes
associated with antioxidant defense, molecular chaperones
and synthesis and transport of “osmoprotectants” e small
molecules known as “organic osmolytes” or “compatible sol-
utes.” This uptake is accompanied by a decreasing
concentration of intracellular inorganic salts.25

Compatible solutes can be classified as amino acids
(eg, glycine, betaine, proline, taurine), polyols (eg,
glycerol, erythritol, inositols, sorbitol), small carbohydrates
(eg, trehalose), methylamines/methylsulfonium solutes (eg,
L-carnitine), or urea (Table 1).26-31 They are all small
molecules that do not perturb cellular macromolecules
even at high concentrations. Many are zwitterionic, in that
although they carry charged groups, the numbers of positive
and negative charges are equal and the net charge is there-
fore zero. Others are weakly polar.

Compatible solutes act as osmoprotectants in a variety of
ways. Uncharged but weakly polar compatible solutes such
as polyols act as osmoprotectants in yeasts and algae,
Table 1. Examples of naturally occurring compatible solutes

Class Osmoprotectant Studied as osmopro

Methylamine L-carnitine Mammalian renal me
Mammalian eye lens
Mammalian mammar

Trimethylamine
N-oxide (TMAO)

Sharks
Mammalian renal me

Polyols Erythritol

Glycerol Algae
Salt-tolerant plants
Insects

Myo-inositols Mammalian renal me
Mammalian brain
Hyperthermophilic ar

Sorbitol Mammalian renal me
Mammalian brain
Freeze-tolerant insect

Amino acids Taurine Mammalian kidney m
Mammalian brain
Porcine arterial tissue
Shallow water inverte

Betaine Mammalian kidney m
Mammalian brain
Porcine arterial tissue
Vascular plants
Sharks

Small carbohydrates Trehalose Insects
Yeast

Urea Sharks
Mollusks
Lungfishes
Amphibians

Information taken from references.25-31
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restoring cell volume that may be lost through water loss
to a hyperosmotic medium. Zwitterionic compatible solutes
such as L-carnitine and betaine act as osmoprotectants in
mammalian systems and bacteria,32-35 and may stabilize
protein surfaces and other osmo-sensitive macromolecules,
thereby maintaining functionality of proteins despite
external stresses.33 Such stabilizing compatible solutes pro-
mote stability through an “osmophobic” effect e a repulsion
between the solute and the protein’s peptide backbone that
encourages correct folding of the protein. Throughout
the natural world, stabilizing compatible solutes such as
trehalose (in insects) and methylamines promote protein
stabilization despite heating, freezing, desiccation, and
changes in pressure.25 Compatible solutes have been shown
to have many other cytoprotective effects beyond osmoreg-
ulation, including antioxidation, redox balancing in hypoxic
conditions, sulphide detoxification, and Ca2þ modulation.25

There are many examples of compatible solutes acting in
mammalian systems. The mammalian renal medullary cells,
tectant in Other information

dulla

y tissue

Thought to stabilize protein surfaces
Present in ocular tear film

dulla
Thought to stabilize protein surfaces
Counteracts urea inhibition

Present in ocular tear film

Protects against high levels of NaCl and KaCl
Was the first to be termed ‘compatible solute’

dulla

chaea

dulla

s

edulla

brates

Present in ocular tear film
Provides metabolic protection in many animals
Widely distributed in animal tissues

edulla

Can protect against freezing, overheating and
desiccation
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Figure 2. Normal distribution of tear osmolarity in normal eyes and in
those from patients with DED. A cutoff value for DED obtained from the
intercept of the curves was defined as 315.6 mOsmol/L.47

(SD ¼ standard deviation).
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for example, are frequently exposed to hyperosmotic stresses
for long periods and adapt to these conditions by accumu-
lating sorbitol, betaine, inositol, taurine, and glycerophos-
phocholine (GPC).36 L-carnitine may also play a role in
kidney osmoregulation.34 In the brain, adaptation to hypo-
smolarity is achieved by loss of amino acids, polyalcohols,
and methylamines.37 Brain cells adapt to hyperosmotic
stress by activating distinct osmoprotective genes, mediated
by tonEBP.38 These genes code for aldose reductase (which
catalyzes production of sorbitol from glucose) and three
transporters of osmoprotectants: sodium-dependent myo-
inositol transporter, betaine/GABA transporter (BGT1)
and taurine transporter (TauT). Porcine pulmonary arterial
endothelial cells accumulate myo-inositol, taurine, and
betaine when adapting to hyperosmotic stress.39

Osmoregulation is also a feature of different parts of the
eye. Human and bovine cultured lens epithelial cells respond
to hyperosmotic stress by raising taurine transport activity,40

and human corneal epithelial cells show a 4.1-fold increase in
uptake of taurine in response to exposure to a 450 Osm/L
medium.41 Similarly, low levels of carnitine have been
observed in the lens in experimental models of diabetes,
and it has been suggested that this is in response to osmotic
stress: carnitine may promote homeostasis by preventing
biochemical modifications of lens proteins and protecting
the cell during extracellular osmotic fluctuations.34

III. HYPEROSMOLARITY IN DRY EYE DISEASE
Tear hyperosmolarity results from reduced aqueous tear

flow (aqueous-deficient dry eye) and/or increased evapora-
tion of the aqueous tear phase from the exposed ocular
surface (evaporative dry eye).42 Evaporative dry eye pre-
dominates and most cases are a mix of aqueous-deficient
and evaporative dry eye (caused by lipid deficiency or
compromised lipid quality).43 Patients with DED, with or
without tear volume reduction, have higher evaporation
rates than controls, and this results in tear hypertonicity.44

In the healthy state, the osmolarity of blood is
285e295 mOsm/L,45 and the osmolarity of the tear film is
in homeostasis with this, with recorded measurements being
296e302 mOsm/L.46-48 In patients with DED, however, this
value is generally 316e360 mOsm/L.47,49,50 Spikes in tear
film osmolarity of 800e900 mOsm/L are thought to occur
over the central cornea,51 but not in the meniscus, where
samples are collected in clinical practice. An analysis of
data from 16 studies published 1978e2004 found substan-
tial overlap between osmolarity values in “normal” eyes
and those of patients with DED (Figure 2).47 The utility of
osmolarity in diagnosis is discussed below.

Tear hyperosmolarity is a principal step in the vicious
circle of DED pathology (Figure 1). In a recent study of pa-
tients with a relapsing type of infectious keratitis, onset of
DED was characterized by hyperosmolarity before changes
were evident in clinical measures such as tear film breakup
time [TFBUT], Schirmer test results, and corneal sensi-
tivity.52 Tear hyperosmolarity leads to morphological
changes such as apoptosis of cells of both the conjunctiva
250 THE OCULAR SURFACE / OCTOBER 2013
and cornea. It is also associated with inflammatory events,
which lead to further cell death and loss of mucin-
secreting goblet cells. Hyperosmolarity will ultimately result
in breakdown of the corneal epithelial barrier function,
which corresponds to fluorescein permeation on examina-
tion (reviewed in Ubels et al, 1994).53

A. Hyperosmolarity and Inflammation
In vitro and in vivo experiments have linked hyperosmo-

larity to inflammatory changes in DED. In vivo models are
complicated by confounding factors that may interact with
osmoregulation and have indirect protective effects; in vitro
assays have the advantage of providing a simplified, almost
pure system to assess the effects of products, but it is difficult
to ensure that the results are relevant in vivo. Systems
frequently used in in vitro experiments are murine (mouse),
leporine (rabbit), and human cultured cells. Most animal and
in vitro studies of hyperosmolarity in DED have been
performed at elevated osmolarity (400e600 mOsm/L) in
order to demonstrate an inflammatory response via activa-
tion of the MAPK pathway and cytokine production.2,54,55

In the human eye, such high levels are hypothesized to be
reached and exceeded over the central cornea.51,56 However,
it is questionable whether exposure to elevated osmolarity in
an experimental model reflects exposure in vivo, as each
blink may transiently alleviate hyperosmolar stress.

Water loss and changes to cell shape may stimulate
specific ion channels, such as transient receptor potential
vanilloid (TRPV) channels.57 This may enhance NFkB sig-
nals, inducing the expression of proinflammatory cytokines,
chemokines, and adhesion molecules. Chronic production
of these molecules stimulates and maintains the inflamma-
tory response. In many experiments with cultured human
corneal epithelial cells, exposure to hyperosmotic stress
resulted in increased expression and production of proin-
flammatory cytokines and chemokines, including matrix
metalloproteinases (MMPs),58 interleukin (IL)-1,54,59

IL-8,54 and tumor necrosis factor (TNF)-alpha.54 This
, VOL. 11 NO. 4 / www.theocularsurface.com
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appears to be mediated by two MAPK pathways e c-Jun N-
terminal kinase (JNK) and extracellular-regulated kinase
(ERK) pathways. JNK- and ERK-mediated increases in
expression of proinflammatory products such as IL-1beta,
TNF-alpha and MMP-9 are also observed in murine corneal
and conjunctival epithelia exposed to hyperosmotic
stress.60,61 In vitro and in vivo experiments on human
conjunctival epithelia from DED patients demonstrated
that extracellular hyperosmolarity induces overexpression
of human leukocyte antigen (HLA)-DR, a glycoprotein
presented by antigen-presenting cells (APCs) to helper
T-cells in the initial stages of the immune response.62

The subclinical inflammation observed in DED leads to
apoptosis of conjunctival, corneal, and lacrimal gland
epithelial cells through a cytochrome c-mediated death
pathway that may be controlled by MAPK and other
signaling pathways,55 as well as neuronal disturbance of
lacrimal gland secretion.63

B. Hyperosmolarity and Morphological Changes
In vitro experiments with rabbit corneal epithelial cells

and two rabbit models of DED showed that hyperosmolarity
was associated with a decrease in corneal epithelial glycogen
and conjunctival goblet cell apoptosis.64,65 Hyperosmolarity
in murine models of DED was also associated with apoptosis
of cells in the central and peripheral corneal epithelia, and
bulbar and tarsal conjunctival epithelia.66

These morphological changes are evident in patients
with DED. Hyperosmolarity has been shown to be respon-
sible for reduced goblet cell density in the interpalpebral
bulbar conjunctiva,67 and loss of goblet cells may be respon-
sible for an unstable tear film51,64 and a reduction of
mucin.64 A combination of in vitro experiments in bovine
corneal epithelial cells and in vivo experiments in human
patients showed a link between hyperosmolarity and tear
film instability.51
Figure 3. ROC (receiver operator characteristic) curves for sensitivity and
specificity of data from a meta-analysis of studies of tear osmolarity be-
tween 1978 and 2004 were derived. The curve is shown for osmolarities
between 300 and 322 mOsmol/L, a cut-off that maximised the sensitivity
and specificity in differentiating DED patients from normal individuals.47
IV. USING A MEASURE OF OSMOTIC STRESS IN
CLINICAL PRACTICE

As hyperosmolarity is a key event in the pathology of
DED, there is the possibility that it could be used as a
sign of the disease and that measurement of tear film osmo-
larity could become an important test in its diagnosis and
follow-up.47 Methods of measuring osmolarity include using
freezing point depression, vapor pressure, or electrical
impedance. However, tear film osmolarity is difficult to
measure with conventional laboratory techniques, because
it is difficult to harvest an adequate volume of tears without
activating reflex secretion. One osmometer that uses a
freezing point depression method (Clifton Technical Phys-
ics, Hartford, NY, USA) can perform measurements on
nanoliter samples of tear, in theory avoiding reflex tearing.68

However, this equipment requires continual maintenance,
the user needs to have significant expertise, and the accuracy
can be diminished by evaporation of the test sample. A
portable in situ osmometer (TearLab�, OcuSense, TearLab
THE OCULAR SURFACE / OCTOBER 2013, VO
Corp, San Diego, CA, USA) is available that measures
electrical impedance of nanoliter volumes of tear fluid
directly from the eye. This may avoid some of the problems
with earlier techniques, and its availability has led to signif-
icant interest in whether osmolarity could be measured in
the clinic to provide a global marker of DED.

A. Utility of Osmolarity in Diagnosis of Dry Eye
Disease
There is poor correlation between individual tests for

DED, and each provides distinct information about the
ocular surface.69 The diagnosis of DED therefore typically
relies on information from multiple tests and symptom
questionnaires. For example, DEWS recommends basing
diagnosis on clinical history, symptom questionnaire,
TFBUT, ocular surface staining, Schirmer test, lid and mei-
bomian morphology, and meibomian expression.1 Studies to
assess the value of osmolarity in diagnosis have focused on
its ability to identify DED patients diagnosed by a battery of
tests and/or its correlation with severity. These studies have
investigated whether osmolarity is a global marker of DED
that captures the totality of the disease, rather than whether
osmolarity provides useful information independent of
other tests. The in situ impedance-based osmometer is
currently approved to aid in diagnosis in conjunction with
other clinical tests, but its optimal use in the diagnostic
process has yet to be established.

Because there is significant overlap between the distribu-
tions of osmolarity values in healthy subjects and DED
patients (Figure 2),47 the choice of diagnostic cut-off value
in DED is necessarily a trade-off between sensitivity and
specificity (or false positives vs false negatives). Among 25
healthy subjects and 77 patients with DED, a cut-off of
316 mOsm/L identified DED more accurately than other
single tests, including the Schirmer test, rose bengal staining,
and lactate levels,47 and was comparable overall with the use
of a combination of tests. While the overall sensitivity for
L. 11 NO. 4 / www.theocularsurface.com 251
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detecting DED was only 59%, specificity was 94% and
predictive accuracy was 89% (Figure 3). A cut-off of
316 mOsm/L was also supported by Jacobi et al in a study
of 133 patients with moderate/severe DED.70

Using an in situ impedance-based osmometer, Lemp
et al found that a cut-off of >311 mOsm/L correctly identi-
fied 92%, 64%, and 89% of normal, mild/moderate, and
severe DED subjects, respectively.46 Sensitivity was 73%
and specificity was 92%. In comparison, corneal staining,
conjunctival staining, and meibomian gland grading were
less sensitive, and TFBUT and Schirmer test were less
specific. The manufacturer of this osmometer recommends
252 THE OCULAR SURFACE / OCTOBER 2013
a cut-off of >308 mOsm/L,71 which in the same study,
identified 81%, 73%, and 90% of normal, mild/moderate,
and severe DED subjects, respectively.46

In a study of 25 normal subjects and 105 DED patients
with a range of severities, Versura et al selected
>305 mOsml/L as the cut-off value for dry eye,
>309 mOsm/L for moderate dry eye, and >318 mOsm/L for
severe dry eye.48 Osmolarity correlated with disease severity
better than other clinical tests. Similarly, in a retrospective
reviewof 314patients, osmolarity had the strongest correlation
with disease severity, as determined using a continuous com-
posite severity index (r2 ¼ 0.55), compared with other DED
Figure 4. Relationship be-
tween individual clinical
signs and the composite
disease severity index. Raw
clinical data for each sign is
plotted on the y-axis against
disease severity on the x-axis.
Vertical dashed lines indicate
the three quartile-derived
groups of normal, mild/
moderate and severe. Corre-
lation coefficients of each
clinical sign (R2) are given.
Only osmolarity showed sig-
nificant correlation to disease
severity within the normal to
moderate cohort. Most clin-
ical signs performed well
only for patients with severe
disease.50
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tests such as conjunctival staining, Ocular Surface Disease
Index� (OSDI), TFBUT, and Schirmer test (Figure 4).50

However, studies of osmolarity as a diagnostic tool in
DED have not been uniformly positive. In a study by
Messmer et al, tear film osmolarity as measured with an
in situ osmometer was 308.9 � 14.0 mOsm/L in 129 patients
with 3-6 signs or symptoms of DED and 307.1 � 11.3
mOsm/L in 71 patients with �2 signs or symptoms.72 Os-
molarity correlated with age, but not with any of the six in-
dividual signs/symptoms of DED examined, and more
surprisingly, there was also no significant difference in os-
molarity between patients who were positive for all six
signs/symptoms compared with those positive for two or
fewer. While there is generally poor correlation between in-
dividual tests in DED, with each providing independent in-
formation, these findings raise the question of whether tear
osmolarity provides further diagnostic information indepen-
dent of other tests, about which there is little evidence. Szalai
et al found that while Schirmer test, corneal staining,
TFBUT and meibomian gland status were significantly
different in DED patients compared with participants
without DED, there was no significant difference in mean
tear osmolarity: 296.77 � 16.48 mOsm/L in non-Sjögren
syndrome DED, vs 303.36 � 17.22 mOsm/L in Sjögren syn-
drome DED, and 303.52 � 12.92 mOsm/L in those without
DED.73

B. Variability in Osmolarity Measurements
Osmolarity measurements are subject to variability

arising from both natural variations in osmolarity in the
meniscus and measurement error. While measurement of
natural variations might be clinically useful, it can be diffi-
cult to distinguish the two sources of variation. Variability
in examiner technique is also a concern.

Turning first to short-term variability (minutes or
hours), repeatability describes the ability of a test to measure
a quantity accurately in the same laboratory, with the same
operator, with the same tools, and with a short time between
tests. There are some uncertainties regarding the repeat-
ability of in situ impedance-based osmometer measure-
ments, and to what extent this is influenced by sampling
technique. With control solutions, the standard deviation
is � 4-7 mOsm/L,74 but studies have reported variable
estimates of repeatability in patients. Khanal et al reported
that consecutive measurements in an individual varied by
up to 35 mOsm/L,75 Eperjesi et al reported a coefficient of
repeatability of 33 mOsm/L,76 and Gokhale reported a coef-
ficient of repeatability of 9.4 mOsm/L.77 Some authors have
reported that multiple measurements may sometimes be
necessary to achieve accurate readings.74,75,78

However, while these variations in results between
groups suggest that differences in measuring technique or
calibration may be important, short-term variations in
osmolarity might also correspond to the tear film instability
that characterizes much DED. In a study in which four
measurements were taken every 15 min followed by four
every 1 min, greater variability was observed in 10 DED
THE OCULAR SURFACE / OCTOBER 2013, VO
patients than in 10 healthy controls (�11.3 mOsm/L
vs � 9.8 mOsm/L for 15 min intervals, and �11.3 mOsm/
L vs �6.2 mOsm/L for 1 min intervals.79 Osmolarity may
also vary between eyes in the same individual;46 this intereye
difference may be an indicator of short-term variability in a
given patient, and correlate with disease severity (r2 ¼ 0.32,
P < 0.0001).46 The intereye difference was 6.9 mOsm/L in
normal patients, close to the 4e7 mOsm/L variability
recorded with control solutions, but 11.7 mOsm/L in pa-
tients with mild/moderate DED and 26.5 mOsm/L in those
with severe DED.

Osmolarity is also subject to longer-term variability, over
weeks or months. Over a 3-month period, osmolarity
showed significantly less variability than corneal staining,
conjunctival staining, or meibomian grading, and similar
variability to Schirmer test, OSDI and TFBUT.46 Again,
variability was more marked in patients with severe disease
than in those with mild disease (10% vs 5.9%).

The manufacturer of an in situ osmometer recommends
testing both eyes and taking the higher value as an indicator
of disease severity, with the difference in values reflecting
variation in osmolarity. While such variations in osmolarity
could potentially be diagnostically valuable, the problem
remains of distinguishing it from measurement errors or
variations in technique. The clinical significance of a given
level of variability is also uncertain, particularly when
osmolarity appears within the normal range, and the role
of assessment of variability in the diagnostic approach
thus remains to be determined.

C. Use of Osmolarity Measurement in Assessing
Therapeutic Efficacy
If osmolarity could be used to predict symptomatic

response, it could be particularly useful in clinical follow-
up. Various DED therapies can reduce hyperosmolarity
significantly. For example, in a study of 18 DED patients
and 19 controls, an artificial tear containing carboxyl
methylcellulose (CMC), osmoprotectants and a lipid
reduced osmolarity from 326 mOsm/L to 302 mOsm/L
over 2 weeks.80 Several trials have reported associations be-
tween different therapies and improved osmolarity values,
while other tests have shown no difference.81,82 In a longitu-
dinal observational case series study followed by an inter-
ventional study in a subset of subjects treated with
cyclosporine A, osmolarity was subject to less variability
than conjunctival staining, corneal staining, or meibomian
gland grading over a 3-month period, with greater improve-
ments following treatment with cyclosporine than with so-
dium hyaluronate artificial tears.83

It is hoped that new markers of osmotic stress at the
ocular surface will be identified and implemented in diag-
nosis and monitoring. In the future, compound measures
incorporating, for example, tear evaporation, tear produc-
tion, and osmolarity may have better diagnostic and moni-
toring capability than single measures. Sullivan et al used a
continuous composite severity index based on tear osmolar-
ity, Schirmer tests, TFBUT, corneal staining, meibomian
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score, conjunctival staining, and OSDI.50 This approach
may reduce “noise” and create a better consensus of severity.

In conclusion, osmolarity measurement is likely to have
a role in diagnosis and follow-up of DED, but is probably
best used alongside standard tests and symptom question-
naires to provide a complete clinical picture. No single
measurement has yet been robustly established as sufficient
for diagnosis and follow-up in DED.

V. PROTECTING AGAINST HYPEROSMOLARITY
The goal of treatment of DED is to improve the patient’s

quality of life, symptoms and visual function by reestab-
lishing homeostasis and integrity of the ocular system.
Essentially, one should aim to prevent the patient from
entering the vicious circle (Figure 1) or promote exit from
it. Preventing entry into the circle refers to addressing
causative factors such as systemic disease, contact lens use,
environmental factors, surgery, infection, etc. Reducing
exposure to preservatives (eg, benzalkonium chloride
[BAK]) in ophthalmological preparations may be useful in
patients with moderate-to-severe DED, but preserved
eyedrops are usually well tolerated in patients without
DED or with mild DED if usage does not exceed 4e6 times
per day.1 Promoting exit from the vicious circle
involves addressing the central mechanisms such as tear
film instability, inflammation of the LFU, and tear
hyperosmolarity.

A. Hypotonic Solutions
Given the role of tear hyperosmolarity in the pathogen-

esis of DED, it has been suggested that hypotonic tear
substitutes could correct the hyperosmolarity and encourage
the establishment of regular osmotic balance between the
epithelial cells and their environment.49 While it has been
shown that hypotonic tear substitutes can be helpful in
reducing ocular surface damage in DED, it appears that
the level of hypotonicity is important.84,85 In one study
(n ¼ 40), a hypotonic formulation of sodium hyaluronate
(150 mOsm/L) was more effective than an isotonic
formulation of sodium hyaluronate in terms of changes in
symptoms and markers of epithelial damage.84 In a separate
trial (n ¼ 158), a less hypotonic formulation (215 mOsm/L)
was associated with outcomes similar to those of its isotonic
equivalent (305 mOsm/L).85

The disadvantages of excessive hypotonic lubrication
with very hypotonic surface lubricants are evident from
observation of patients who have undergone transplantation
of the autologous submandibular gland (SMG).86 Salivary
tears resulting from this provide excessive, hypotonic
lubrication, equivalent to an eyebath of 160e170 mOsm/L,
and can be associated with microcystic corneal edema.

Hypotonic tear substitutes generally have limited
persistence in the eye, and this means that after instillation,
osmolarity returns to a hyperosmolar range within approx-
imately 1e2 minutes.87 Now, with greater understanding of
hyperosmolarity and osmoprotection, other means of pro-
tection are being developed. DED treatments may
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be improved by inclusion of osmoprotectant compatible
solutes, as discussed below.

B. Osmoprotectant Compatible Solutes
One way to counteract the effects of hyperosmolarity

may be to use osmoprotectant compatible solutes to protect
ocular epithelial cells. If this is successful, one would expect
this to reduce inflammation and additional cell damage.
There are a number of osmoprotectants that have been
included in DED therapies. Osmoprotection appears to be
one way by which the vicious circle of DED pathology can
be broken, allowing improvement of signs and symptoms.

Erythritol, a natural polysaccharide small enough to
penetrate the corneal epithelium is transported by aquagly-
ceroporin channels in the corneal epithelium.88 It stabilizes
proteins,89 reduces MAPK-mediated signaling in corneal
epithelial cells,26 and has a positive effect on cellular func-
tion (as measured by transepithelial electrical resistance
[TEER]) on leporine corneal epithelial cells exposed to
hyperosmotic stress.88

Glycerol is a polyol and was the first osmolyte to be termed
a “compatible solute.” It has been extensively studied in
algae, salt-tolerant plants and insects. It has also demonstrated
osmoprotective effects in corneal epithelial cells in vitro.88

Trehalose is a small disaccharide that, in yeast and
insects, stabilizes proteins and protects against extremes in
temperature and desiccation.25 Human primary fibroblasts
transfected with genes for trehalose biosynthetic enzymes
were able to survive desiccation for up to five days.90

Corneal epithelial cells incubated with trehalose were also
able to survive desiccation.91 Trehalose protected against
apoptosis of corneal and conjunctival cells (including goblet
cells) in a murine model of DED92 and against UV-induced
oxidative damage in leporine corneal cells.93 In a murine
model of DED, trehalose reduced levels of inflammatory
cytokines in the conjunctiva.94

Taurine is an amino acid-compatible solute that is
widespread throughout the natural world and is compatible
with intracellular structures.95 It was also shown to protect
leporine corneal epithelial cells exposed to hyperosmotic
stress.88 Furthermore, a contact lens solution with taurine
was associated with a reduction in proteins associated with
inflammation.96

L-carnitine, an amino acid found in food and synthe-
sized by the liver, is actively transported via OCTN2 into
cytosol.97 It has been shown to protect retinal pigment
epithelial cells from oxidative damage98 and reduce activa-
tion of MAPK-mediated signaling in vitro88 and in corneal
epithelial cells cultured in a hyperosmotic medium.26 It was
shown to protect leporine corneal epithelial cells exposed to
hyperosmotic stress88 and inhibit apoptosis of cultured
human corneal epithelial cells exposed to hyperosmotic
stress.99 L-carnitine has also been shown to delay cataract
development in animal models.100

The osmoprotective effect depends on how much osmo-
protectant the cell takes up and how long it is retained.
Glycerol and erythritol are small polyols and can enter the
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cell very quickly via the water channel. However, compared
with erythritol, glycerol also leaves very quickly.101 In
contrast, L-carnitine is taken up via the amino acid trans-
porters and is retained for longer periods. While glycerol
may be important as a short-term osmoprotectant, clinical
results may be improved if it is combined with a protectant
that acts over a longer term. Consequently, combining
several osmoprotectants that act with different kinetics
into one formulation may work better to increase the overall
protective effect.

C. Osmoprotective Solutions
There is now an expanding pool of clinical data on the

role of osmoprotectants in patients with DED. A preparation
of CMC and osmoprotectants (in most preparations: glyc-
erol, erythritol and L-carnitine) has been studied in patients
with DED. In a 1-month, randomized controlled trial (RCT)
of 47 patients treated with either CMC plus osmoprotectants
(CMC-OP, Optive�) or a hyaluronate-based product that
did not contain osmoprotectants, conjunctival staining was
reduced with CMC-OP and a greater percentage of patients
receiving CMC-OP were reported to have no staining at
1 month.102 In a 6-week comparison of CMC-OP vs an
eye drop containing hydroxypropyl guar in 105 patients,
both products were found to significantly reduce signs and
symptoms of DED from baseline, and CMC-OP led to
greater reductions in corneal and conjunctival staining.103

In a large, uncontrolled observational study (n ¼ 5277),
CMC-OP use was associated with improvements in symp-
toms and signs of DED compared with baseline.104

In an RCT of 82 patients with DED, CMC-OP was non-
inferior to sodium hyaluronate in terms of osmolarity,
Schirmer test scores, scores on the 12-item OSDI question-
naire, ocular staining, and patient preference.105 Moreover,
osmoprotection may provide some benefits over sodium
hyaluronate: in a comparison of CMC-OP with sodium hya-
luronate in patients with glaucoma using antiglaucomatous
agents, CMC-OP significantly improved OSDI scores and
Oxford Grading System scores compared with baseline,
while sodium hyaluronate did not.106 A small 3-month
study of 19 patients with DED suggested that CMC-OP
could be used adjunctively with cyclosporine 0.05%.107 In
this study, improvements from baseline were noted in
conjunctival staining, TFBUT, OSDI scores, and patient-
reported ocular discomfort.

Another approach has been to use eye drops containing
trehalose (Thealoz�). In a 4-week trial, 34 patients were
treated with eye drops containing different concentrations
of trehalose six times daily. Measurements of TFBUT and
ocular staining showed significant improvements from
baseline with 100 mM trehalose solution.108 In a 4-week
randomized, double-masked, crossover study of 36 patients
with moderate to severe DED, eye drops containing
trehalose significantly improved ocular staining scores
compared with DED therapies containing hyaluronan or
hydroxyethylcellulose.109
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VI. CONCLUSION
Tear film instability and tear hyperosmolarity play

major roles in the vicious circle of DED pathology. Hyper-
osmolarity directly causes cell damage and nerve stimulation
and triggers inflammatory cascades. These cascades then
contribute to further cell damage, including loss of mucin-
producing goblet cells. This exacerbates tear film instability
and drives the circle further. Methods for measuring osmo-
larity in a clinical setting need further research in order to
find a standard and reliable measure that is useful for diag-
nosis and follow-up.

Tackling causative factors such as systemic disease,
contact lens use, environmental factors, surgery, infection,
etc. may prevent the patient from entering the vicious
circle of DED. In order to remove patients from the cycle
of interactions that can amplify the severity of DED, central
mechanisms such as tear hyperosmolarity must be
addressed. Traditional approaches to correcting hyperosmo-
larity in DED include use of hypotonic tear substitutes,
which have relatively short persistence in the eye and correct
osmolarity for 1-2 minutes. DED treatments may benefit
from inclusion of osmoprotectants, naturally occurring
compatible solutes that are internalized by cells, restoring
cell volume and stabilizing proteins. New formulations of
artificial tears have been developed that include one or
more osmoprotectants. Emerging clinical trial data suggest
a beneficial role for osmoprotectant solutions in patients
with DED, and further research into osmoregulation may
enhance our understanding of DED pathology and provide
new avenues for its treatment.
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