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ABSTRACT.

Dry eye disease (DED) is a common, multifactorial ocular condition with major impact on
vision and quality of life. It is now well recognized that the pathophysiology of chronic

DED can include a cycle of inflammation involving both innate and adaptive immune

responses. Recently, in vitro/in vivo models have been used to obtain a better

understanding of DED-related inflammatory processes at molecular/cellular levels
although they do not truly reproduce the complex and chronic hallmarks of human

DED. In clinical DED research, advanced techniques such as impression cytology,

conjunctival biopsy, in vivo confocal microscopy and multiplex tear analyses have allowed

an improved assessment of inflammation in DED patients. This was supported by the
identification of reliable inflammatory markers including matrix metalloproteinase-9,

human leucocyte antigen-DR or intercellular adhesion molecule-1 in tears and impression

cytology samples. One of the current therapeutic strategies focuses on breaking the
inflammatory cycle perpetuating the ocular surface disease, and preclinical/clinical

research has led to the development of promising anti-inflammatory compounds. For

instance, cyclosporine, already approved in the United States, has recently been

authorized in Europe to treat DED associated with severe keratitis. In addition, other
agents such as corticosteroids, doxycycline and essential fatty acids, through their anti-

inflammatory properties, show encouraging results. We now have a clearer understanding

of the inflammatory processes involved in DED, and there is hope that the still emerging

preclinical/clinical findings will be translated into new and highly effective therapies for
patients in the near future.
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Introduction

Dry eye disease (DED) is a distressing
multifactorial condition of major
impact on patients’ vision and quality
of life, with disease symptoms that can
seriously hinder daily activities. This
condition affects between 5% and 35%
of adults worldwide (Dry Eye Work-
Shop 2007b). Triggering factors
include intrinsic and extrinsic elements
such as age, gender, hormones, autoim-
mune disorders, local environment, use
of video display, contact lens wear and
exposure to medications/preservatives
(e.g. benzalkonium chloride [BAK]), all
potentially leading to secretory and/or
evaporative DED (Dry Eye WorkShop
2007a). In particular, low humidity
and/or windy environmental condi-
tions greatly contribute to ocular sur-
face desiccation (Dry Eye WorkShop
2007a). Furthermore, dry eye sensa-
tions and symptoms were recently
confirmed to be enhanced by seasonal
conditions (van Setten et al. 2016).

Because of the multifactorial nature
of the disease and frequent discordance
between patients’ symptomatology and
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ocular surface clinical signs, diagnosis
of DED and assessment of its severity
are often challenging. Recently, the
ODISSEY European Consensus Group
has recommended a practical algorithm
to be used in clinical settings, facilitat-
ing diagnosis of severe DED (Baudouin
et al. 2014).

In 2007, the Definition and Classifi-
cation Committee for the International
Dry Eye Workshop highlighted the
crucial roles of hyperosmolarity and
inflammation in DED (Dry Eye Work-
Shop 2007a) and how the interdepen-
dence between these factors may lead
to cell apoptosis, ocular surface dam-
age, visual impairment and other asso-
ciated symptoms. This review aims not
to look primarily at intrinsic and
extrinsic causes of DED but rather to
highlight the contribution of inflam-
mation, where clearly present, in the
course of the disease.

Diagnosis of DED relied previously
on blunt tools including vital dye
staining (e.g. corneal fluorescein stain-
ing—CFS), estimation of tear break-up
time and Schirmer’s testing. However,
in recent years, there have been signif-
icant technological developments to
better identify DED-related inflamma-
tion. This review will discuss the dif-
ferent experimental models currently
available to understand this process at
the molecular and cellular levels. Addi-
tionally, the latest techniques allowing
the detection of inflammation on the
ocular surface and in tears together
with the advances made in developing
anti-inflammatory therapies will be
presented.

Vicious Circle of DED

Over the years, based on numerous
experimental models mimicking DED
and on new technologies to measure
inflammation and explore biomarkers,
growing evidence showed that both
hyperosmolarity and inflammation
could affect the ocular surface in an
independent as well as in a synergistic
manner. These findings led to the
redefinition of DED to include the
pivotal roles of these two factors in
this disease (Dry Eye Workshop
2007a). Despite the multifactorial nat-
ure of DED, this disease can be
chronically self-maintained through a
cycle of local and systemic responses,
which include inflammation (Dry Eye
WorkShop 2007a). Dry eye disease

(DED) related inflammation involves
both innate and adaptive immune
responses. The innate immunity pro-
vides an immediate, non-specific
defence response, while the adaptive
(or acquired) immune system confers
long-lasting immunity after an initial
encounter with a specific antigen.

Triggering factors of inflammation

Ocular surface immune homoeostasis is
regulated by resident lymphocytes (e.g.
CD8+, cd and natural killer T-cells;
Bonaccorsi et al. 2015) and CD4+

regulatory T-cells. These interact with
anti-inflammatory factors, such as
interleukin (IL)-1 receptor antagonist,
transforming growth factor (TGF)-b2
and matrix protease inhibitors like
tissue inhibitor of metalloproteinase
(TIMP)-1 (Gupta et al. 1996; Sobrin
et al. 2000; Solomon et al. 2001; Bara-
bino & Dana 2007; Stern et al. 2013).
Stress factors including environment
challenges, infections, endogenic stress,
autoimmunity and genetic factors may
all disturb the finely tuned homoeo-
static balance existing on the ocular
surface and activate an acute inflam-
matory response (Fig. 1; Baudouin
et al. 2013; McDermott et al. 2005;
Stern et al. 2013).

Increase in tear film osmolarity,
possibly triggered by dysfunctional tear
secretion (aqueous tear-deficient dry
eye) and/or excessive water evapora-
tion with normal lacrimal secretory
function (evaporative dry eye) may
lead to hyperosmotic, desiccating and
mechanical/shear stresses (due to loss
of hydration/lubrication), also initiat-
ing innate inflammatory events (Dry
Eye WorkShop 2007a).

Furthermore, the hyperosmolar-
mediated epithelial damage causes
exposure and chronic stimulation of
corneal nerve endings (Dastjerdi &
Dana 2009; Stevenson et al. 2012).
The reduction in corneal sensitivity
promotes neurogenic stress, contribut-
ing to impairment of ocular surface
homoeostasis (Bourcier et al. 2005;
M’Garrech et al. 2013).

Increased blinking and higher reflex
tear secretion can result in release of
neurotrophic factors such as nerve
growth factor (NGF) as well as several
neuropeptides (e.g. substance P, calci-
tonin and neuropeptide Y), affecting
immune cell degranulation, blood flow
and extravasation which may lead to

neurogenic inflammation on the ocular
surface and within the lacrimal gland.
An inflamed lacrimal gland may pro-
duce ‘toxic tears’ containing pro-
inflammatory cytokines, disrupting
ocular surface homoeostasis and exac-
erbating an innate inflammatory
response (Rolando et al. 2005; Dry
Eye WorkShop 2007a; Mantelli et al.
2010; Lambiase et al. 2012).

Local immune responses

In the early stages of DED, exposure of
corneal and conjunctival epithelia to
injury induces the activation of stress-
associated signalling cascades including
the mitogen-activated protein kinase
(MAPK) and nuclear factor jB
(NFjB) pathways (Li et al. 2004,
2006; Luo et al. 2004, 2005; Stevenson
et al. 2012; Stern et al. 2013), resulting
in expression of pleiotropic pro-inflam-
matory cytokines/chemokines (e.g.
tumour necrosis factor-a [TNF-a], IL-
1b, IL-6, IL-8 and NGF) and matrix
degrading proteases (e.g. matrix metal-
loproteinase [MMP]-9 and MMP-3) by
corneal and conjunctival epithelial cells
(Luo et al. 2004; Li et al. 2006; Na
et al. 2012; Stern et al. 2013). The
development of such a pro-inflamma-
tory environment is further supported
with (1) a decrease in the release of
anti-inflammatory TGF-b2 by conjunc-
tival goblet cells in the initial stages of
the disease (Pflugfelder et al. 2008a),
(2) an inhibition of immune-protective
cells such as regulatory T-cells (Sie-
masko et al. 2008; Stevenson et al.
2012), (3) an increase in MAPK, TNF
and Fas-Fas ligand pathway-mediated
apoptosis of epithelial and goblet cells
(Yeh et al. 2003; Luo et al. 2007;
Stevenson et al. 2012), and (4) a
decrease in apoptosis of ocular surface
inflammatory cells (Perez et al. 2009;
Gao et al. 2013).

The pro-inflammatory milieu upreg-
ulates expression of receptors to
inflammatory effectors (e.g. human
leucocyte antigen [HLA]-DR, CD40,
CD40 ligand, toll-like receptor 4 and 5
and C–C chemokine receptor 5) and
adhesion receptors (e.g. intercellular
adhesion molecule [ICAM]-1), facilitat-
ing inflammatory mediators’ recruit-
ment and migration from the ocular
surface (Calonge et al. 2010; Redfern
et al. 2015). There is also an increase in
expression and activation of enzymes
involved in the innate immunity (e.g.
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acidic mammalian chitinase; Musumeci
et al. 2009, 2008) and in apoptosis (e.g.
transglutaminase-2; Aragona et al.
2015). Together, these cascades of
events contribute to amplify and per-
petuate the non-self-healing innate
inflammation responses, consequently
resulting in cellular/tissue damage.

Epithelial-derived pro-inflammatory
cytokines activate immature resident
antigen-presenting cells (APCs), which
are mainly dendritic cells, on the ocular
surface. Mature APCs migrate to the

regional lymph nodes and initiate an
adaptive immune response by priming
na€ıve CD4+ T-cells including T helper
(Th)1 and Th17 cells (Niederkorn et al.
2006; De Paiva et al. 2007, 2009; El
Annan et al. 2009; Stevenson et al.
2012; Stern et al. 2013). Through acti-
vated angiogenesis and lymphangio-
genesis, these inflammatory mediators
traffic back to the ocular surface, where
Th1-secreted interferon (IFN)-c and
Th17-secreted IL-17 increase cytokine
production, induce epithelial and

goblet cell apoptosis and alter conjunc-
tival homoeostasis, perpetuating a
chronic inflammatory process (Pflug-
felder et al. 2008a).

Experimental Data
Supporting DED
Inflammation

Over the past two decades, experimen-
tal in vitro cell-based assays and in vivo
animal models have greatly contributed

Fig. 1. Vicious circle of dry eye disease. MGD = Meibomian gland dysfunction; LASIK = Laser-assisted in situ keratomileusis; MMP = Matrix

metalloproteinase. This diagram has been published in the reference Baudouin et al. 2013 under the Creative Commons Attribution-NonCommercial-

ShareAlike License.
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to an improved understanding of the
effects of inflammation in DED (Dry
Eye WorkShop 2007d; Calonge et al.
2010; Wei & Asbell 2014).

In vitro cell-based models

These assays primarily use human
corneal, conjunctival or limbal epithe-
lial cells exposed to hyperosmotic/des-
iccating stress, induced either by
increasing osmotic conditions to 350–
500 mOsm or by exposing cells to air
after culture medium removal. These
experimental models have allowed to
easily simulate stress factors known to
trigger DED and therefore to learn
more about the resulting inflammatory
events.

For example, exposure of human
limbal/corneal epithelial cells to hyper-
osmotic/desiccating stress induces acti-
vation of MAPK signalling pathway
and expression of cytokines (e.g. IL-1b,
TNF-a, IL-8 and IL-6; Higuchi et al.
2011; Li et al. 2006) and MMPs (e.g.
MMP-9, MMP-1, MMP-13 andMMP-
3; Li et al. 2004). Furthermore, IFN-c-
stimulated inflammation results in
increased HLA-DR and ICAM-1
expression on primary epithelial cell
surface (Zhan et al. 2003).

In the past 10 years, in vitro three-
dimensional models of human corneal
epithelium have been developed and
used as dry eye models after exposure
to controlled environmental conditions
(i.e. <40% humidity and 40°C temper-
ature; Meloni et al. 2011; Barabino
et al. 2016). Similarly, in vitro models
of conjunctival epithelium and bioengi-
neered lacrimal glands are also being
investigated and developed in labora-
tories to better simulate micro-environ-
mental conditions of both physio- and
pathological ocular surfaces (Chung
et al. 2007; Hirayama et al. 2013; Lu
et al. 2015).

Although in vitro assays are rela-
tively simple and useful models to
understand ocular inflammation at
molecular/cellular levels, they still fail
to truly represent its complexity.

In vivo animal models

Several in vivo models, mainly in
rodents, have been designed to study
ocular surface inflammatory mecha-
nisms (Barabino & Dana 2004; Dry
Eye WorkShop 2007d; Calonge et al.
2010).

Among them, a mouse model of
DED consists of pharmacological
blockage of lacrimal tear production
by transdermal application of scopo-
lamine and exposure to environmental
desiccating stress (Dursun et al. 2002).
The observed reduction in tear pro-
duction and clearance, decrease in
conjunctival goblet cells and morpho-
logical changes in conjunctival epithe-
lial cells all resemble those in human
DED. The utility of this model is not
that it induces DED similarly to the
human disease, but that the resulting
inflammation and damage share strong
similarities.

Additionally, a different model
exposing mice to specific low-humidity
environment showed development of
typical clinical signs similar to DED
patients (Barabino et al. 2005). Ani-
mal models have shown systematic
presence of inflammation with DED-
like signs and have allowed identifica-
tion of key inflammatory effectors
(Calonge et al. 2010). For example,
Niederkorn et al. (2006) proved that
CD4+ T-cells are key inflammatory
players in mice exposed to environ-
mental desiccating stress and adoptive
transferred CD4+ T-cells could pro-
duce keratoconjunctivitis sicca (KCS)
in wild-type mice not exposed to
injury. The importance of regulatory
T-cells in ocular surface homoeostasis
has also been studied in a desiccating
stress-induced mouse model of DED
(Siemasko et al. 2008). In a similar
experimental model, Schaumburg
et al. (2011) showed that ocular sur-
face APCs are essential in DED initi-
ation and development, supporting the
paradigm that dry eye can result from
autoimmune causes, which often
involve inflammation.

Other in vivo models have been
developed in mice to reproduce patho-
physiological mechanisms observed in
dry eye. For example, topical instilla-
tion of 0.2% BAK led to inflammatory
changes resembling those seen in
human and this BAK-induced dry eye
model may potentially be useful to test
anti-inflammatory therapies in DED
(Lin et al. 2011). Moreover, a mouse
model of aqueous tear-deficient DED
was characterized after extra-orbital
lacrimal gland excision, which induced
decreased aqueous tear secretion,
increased corneal epitheliopathy and
ocular surface inflammation and
immunity (Stevenson et al. 2014).

Likewise, some dog species sponta-
neously develop DED due to lacrimal
gland problems that may be immune-
mediated or might have other causes.
This canine DED model caused by
lacrimal gland dysfunction (both pri-
mary and/or nictitating) has been used
to identify biochemical abnormalities
in ocular mucins (Calonge et al. 2010)
and to demonstrate positive anti-
inflammatory effects of cyclosporine
(CsA; Kaswan et al. 1989).

Animal models are very powerful
experimental systems to simulate DED
inflammation and to investigate poten-
tial treatments although none manages
to reproduce all aspects of the chronic
hallmark of human DED.

Clinical data supporting
inflammation in DED

Over the years, techniques have been
developed (1) to diagnose DED inflam-
mation, (2) to identify and validate
ocular surface inflammatory biomark-
ers, (3) to further understand the DED
inflammatory mechanisms, and (4) to
assess clinical efficacy of anti-inflam-
matory DED treatments.

Exploratory techniques and biomarkers

Conjunctival hyperaemia is a hallmark
of ocular inflammation that can be
objectively evaluated by anterior seg-
ment photography and/or with the use
of grading scales (e.g. McMonnies
scale; McMonnies & Ho 1991). Tear
film hyperosmolarity can also be an
indirect sign of inflammation. Indeed,
although hyperosmolarity is regarded
as the key triggering factor of ocular
surface inflammation, inflammation
itself may in turn lead to dysfunction
of tear secretion and therefore
increased osmolarity (Niederkorn et al.
2006; Dry Eye WorkShop 2007c). Cur-
rently available systems designed to
measure tear osmolarity (e.g. TearLab
Osmolarity System) make systematic
clinical evaluation of tear film osmo-
larity feasible (Sullivan et al. 2004).

Matrix metalloproteinase-9 has been
shown to contribute to the DED
inflammatory process (Luo et al. 2004;
Pflugfelder 2011). Its expression by
epithelial cells and infiltrating leuco-
cytes as well as its MMP-3 and TIMP-
1-mediated enzymatic activity increases
on the ocular surface of patients with
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dysfunctional tear syndrome (Sobrin
et al. 2000; Chotikavanich et al. 2009;
Iovieno et al. 2009). Recent commer-
cialization of a MMP-9 detection test
(InflammaDry� Detector, RPS) makes
it a potentially good biomarker of
inflammation in DED. This device
proved to be qualitatively sensitive
and specific for DED diagnosis and to
well-correlate with other clinical tests in
two studies, although not all patients
with dry eye expressed this indicator of
cell damage (Sambursky et al. 2013;
Messmer et al. 2014). However, poor
correlation between this test and tear
osmolarity was recently found in
patients with mild DED, suggesting
that it may be more suitable for diag-
nosis of moderate to severe DED
(Schargus et al. 2015).

Recently, Jackson et al. (2016)
found significant correlations between
tear IFN-c concentrations, tear osmo-
larity, total ocular surface staining and
Schirmer’s test score, all key clinical
diagnostic parameters for DED, sug-
gesting IFN-c as a potential biomarker
of tear hyperosmolarity associated with
evaporative DED.

Hyperosmolarity induces HLA-DR
overexpression in human conjunctival
epithelial cells (Brignole et al. 2000;
Barabino et al. 2010; Versura et al.
2011), and this upregulation may be

driven by IFN-c as shown in Sj€ogren’s
patients (Tsubota et al. 1999). In 1992,
Baudouin et al. showed that impression
cytology/immunohistochemistry could
specifically detect HLA-DR expression
and therefore local conjunctival inflam-
mation (Fig. 2A; Baudouin et al. 1992).
These findings were later confirmed in
thefirst report showingquantificationof
HLA-DR expression in impression
cytology specimens by flow cytometry
(Baudouin et al. 1997). Furthermore,
using similar techniques in dry eye
samples, the number of goblet cells was
shown to negatively correlate with
HLA-DR expression (Pisella et al.
2000). More recently, Yafawi et al.
(2013) demonstrated that impression
cytology detecting HLA-DR as a bio-
marker of ocular surface inflammation
was a sensitive, reliable, simple and non-
invasive technique for investigating
DED inflammation. Also, quantitative
HLA-DR detection by impression
cytology has been used in several DED
clinical trials, and Epstein et al. (2013)
have published a standard operating
procedure for use of this inflammatory
biomarker in multicentre clinical trials.
Using impression cytology, one study
showed that one drop of low-concentra-
tion clobetasone butyrate twice daily
significantly decreased HLA-DR
expression in Sj€ogren’s patients

(Aragona et al. 2013). Furthermore,
topical CsA significantly reduced
HLA-DR expression in dry eye patients
(Brignole et al. 2001; Leonardi et al.
2016) and in a large randomized study,
and Brignole-Baudouin et al. (2011)
demonstrated that oral supplementa-
tion of omega-3 and omega-6 fatty acids
decreased HLA-DR expression on con-
junctival cells in DED patients. Similar
toHLA-DR, ICAM-1 is upregulated on
the conjunctival epithelium in ocular
surface inflammation and could repre-
sent a potential biomarker (Tsubota
et al. 1999). Stern et al. (2002) have
identified lymphocytic infiltration and
immunoreactivity for HLA-DR and
ICAM-1using conjunctival biopsy, con-
firming conjunctival inflammation in
DED patients.Moreover, with the same
technique, Kunert et al. showed that
topical CsA significantly reduced the
number of activated lymphocytes and
increased the number of goblet cells in
DED patients (Kunert et al. 2000,
2002).

High-throughput screening

Recent technological development has
allowed multiplex detection of pro-
inflammatory cytokines/chemokines in
ocular tissues, cells and tears and
identification of expression patterns

(A) (B)

Fig. 2. Exemplary images of conjunctival/corneal samples from dry eye patients following impression cytology (A) and in vivo confocal microscopy

(B). (A) Confocal microscopy following immunofluorescence staining for HLA-DR of conjunctival impression cytology from a dry eye patient. HLA-

DR expression on the conjunctival epithelium is shown in green with nuclear staining in red (bar = 30 lm; HRT/RCM, Heidelberg, Germany). (B) In

vivo confocal microscopy image presenting the dendritiform inflammatory cells in the conjunctiva/cornea of a dry eye patient (HRT/RCM,

Heidelberg, Germany).
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specific to different immune-based ocu-
lar disorders (e.g. allergy and active
Sj€ogren’s syndrome; Enriquez-de-Sala-
manca & Calonge 2008). For example,
multiplex immunobead assays have
allowed identification of specific pat-
tern of cytokines released by corneal
and conjunctival epithelia in two dif-
ferent mouse strains subjected to des-
iccating stress: C57BL/6 mice had
increased tear levels of Th-1 cytokines,
while BALB/c mice of Th-2 cytokines
(Corrales et al. 2007; Yoon et al.
2007). These findings may suggest that
blocking the production of certain
cytokines or their receptors may mod-
ulate the ocular surface immune-
inflammatory response in DED.
Although the great amount of data
generated by the multiplex-based tech-
nology may sometimes be difficult to
interpret, it provides valuable informa-
tion on the main ocular source for
specific cytokines/chemokines.

Technological advances in mass
spectrometry with proteomics, metabo-
lomics, lipidomics and glycomics have
allowed the development of analytical
methods of tears and conjunctival
impression. These may provide better
understanding of the role of specific
molecules in DED inflammation and
help with diagnosis, management and
treatment (Zhou et al. 2012; Soria
et al. 2013).

Imaging techniques

In vivo confocal microscopy (IVCM) is
a non-invasive and powerful imaging
technique that allows in vivo visualiza-
tion of the ocular surface at the cellular
level (Fig. 2B). In DED, IVCM is used
to observe squamous abnormalities in
corneal and conjunctival epithelia,
changes in subepithelial corneal nerve
plexus, dysfunctional meibomian
glands, as well as the presence of
inflammatory cell infiltration, goblet
cell density and apoptosis, all good
indicators of DED inflammation (Vil-
lani et al. 2013, 2014). It has also been
used to make qualitative and quantita-
tive assessments of DED progression
and severity (Qazi et al. 2014).

Another important imaging tool
used in clinical practice is the anterior
segment optical coherence tomography
(AS-OCT). This technique is a non-
contact optical system that captures
cross-sectional images of the cornea
and anterior chamber. It allows

quantitative analyses such as tear
meniscus measurements and therefore
may be useful and applicable for DED
diagnosis and evaluation (Ibrahim
et al. 2010; Lim 2015).

Treatments Targeting
DED Inflammation

Numerous anti-inflammatory agents
are being developed as treatments for
DED in hopes that the vicious circle of
DED may be broken by reducing the
amount of inflammation on the ocular
surface and in the lacrimal unit.

Corticosteroids

Dry eye disease (DED) is consensu-
ally listed by the United States Fed-
eral Regulations as steroid-responsive
inflammatory conditions (Dry Eye
WorkShop 2007c). Although corticos-
teroids are not explicitly indicated for
treating DED, they are the most com-
monly prescribed short-term treatment
for managing DED-associated inflam-
mation.

Corticosteroids act on various
inflammatory responses including
ICAM-1-mediated cell adhesion,
cytokines/chemokines/MMPs expres-
sion and induction of lymphocyte
apoptosis (Pflugfelder 2004; De Paiva
et al. 2006; Yagci &Gurdal 2014). They
have been shown to clinically improve
DED symptoms in several clinical trials
(Dry Eye WorkShop 2007c; Aragona
et al. 2013, 2015). However, their long-
term use in ocular conditions is not
recommended because of steroid-
related side-effects such as increased
intraocular pressure and cataract for-
mation (Marsh & Pflugfelder 1999).

Cyclosporine

The immunosuppressive properties of
CsA were first demonstrated in the
canine spontaneous DED model (Kas-
wan et al. 1989). In a large multicentre
study, 0.05–0.1% CsA treatment sig-
nificantly reduced HLA-DR expression
and to a lesser extent expression of
other inflammatory and apoptotic
markers in patients with moderate to
severe DED (Brignole et al. 2001;
Galatoire et al. 2003). A 6-month
treatment with 0.05–0.1% CsA resulted
in a decrease in activated lymphocytes
and an increase in goblet cells in DED

patients (Kunert et al. 2000, 2002).
Topical CsA increased goblet cell den-
sity and conjunctival production of
immunomodulatory TGF-b2 in DED
patients (Pflugfelder et al. 2008b). In
addition, 6-month treatment with
0.05% CsA decreased conjunctival IL-
6 expression in patients with moderate
to severe DED (Turner et al. 2000).
According to available clinical data,
topical CsA treatment may take 6–
8 weeks to see any significant improve-
ment in DED inflammation with no
major safety concerns (Gumus &
Cavanagh 2009; Aragona 2014; Yagci
& Gurdal 2014).

In 2003, topical 0.05% CsA emul-
sion (Restasis�, Allergan) received
approval from the Food and Drug
Administration to increase tear pro-
duction in patients whose tear produc-
tion is presumed to be suppressed due
to ocular inflammation associated with
KCS. Restasis was never approved by
the European Medicines Agency
(EMA). Topical 1 mg/mL CsA catio-
nic emulsion (Ikervis�, Santen) was
approved in 2015 by the EMA and is
the only CsA-containing treatment
licensed in Europe. It is indicated for
severe keratitis in adult patients with
dry eye which has not improved despite
treatment with tear substitutes.

Essential fatty acids

Several studies showed that oral admin-
istration of omega-3 and omega-6
essential fatty acids improves both
DED symptoms and inflammation
(Roncone et al. 2010; Deinema et al.
2016; Epitropoulos et al. 2016).
Omega-6 administration has been
shown to improve ocular surface signs
and ocular discomfort symptoms in
Sj€ogren’s patients (Aragona et al.
2005). In addition, omega-3/omega-6
therapy improved DED signs (i.e. lis-
samine green staining but not tear
break-up time or Schirmer’s test) and
reduced ocular surface expression of
HLA-DR (Barabino et al. 2003). These
results were confirmed in a multicentre,
randomized study; supplementation
with omega-3 and omega-6 fatty acids
reduced HLA-DR expression in
patients with DED although there was
no significant difference versus placebo
in ocular symptoms (Brignole-Bau-
douin et al. 2011). Randomized multi-
centre studies are currently ongoing to
further investigate omega-3 fatty acids’
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efficacy in DED. In addition, topical
eye drops containing omega-3 fatty
acids have recently become available
and are currently under investigation
for treating DED (Messmer 2015).

Other anti-inflammatory therapies

Other potential anti-inflammatory
agents that have shown very encourag-
ing results are currently being investi-
gated in experimental models and/or
clinical trials. For example, tetracycline
and its derivatives (e.g. doxycycline)
possess anti-inflammatory and anti-
angiogenic properties, which make
them potential candidates for treating
DED inflammation. Although tetracy-
clines showed promising results in
experimental DED, ocular rosacea
and chronic meibomian gland dysfunc-
tion (Stone & Chodosh 2004; Yoo
et al. 2005; De Paiva et al. 2006; De
Paiva & Pflugfelder 2008), randomized,
placebo-controlled clinical trials are yet
to be conducted.

Another investigational molecule
called SAR1118 is a lymphocyte func-
tion-associated antigen-1 antagonist.
This compound inhibits T-cells’ activa-
tion, adhesion, migration, proliferation
and cytokine release by blocking T-
cells’ interaction with epithelial and
endothelial cells and APCs (Murphy
et al. 2011). SAR1118 showed promis-
ing results in a prospective, double-
masked study in dry eye patients,
improving tear production and ocular
symptoms, but these positive results
need to be confirmed in additional
clinical trials (Semba et al. 2012).

Other anti-inflammatory com-
pounds currently under investigation
for treating DED, such as anti-inflam-
matory CD44, tacrolimus, voclosporin,
anti-TNF-a agents, androgens and
resolvins, all aim to prevent chronic
inflammation by targeting specific
inflammatory pathways/effectors. To
date, only CsA has been approved by
the American and European Regula-
tory Authorities for DED treatment.

There are likely multiple reasons why
anti-inflammatory treatments currently
only work on a subset of DED patients.
Disease variability, lack of correlation
of signs and symptoms, inappropriate
dosage of experimental anti-inflamma-
tory treatments and other factors
contributing to disease severity like
hyperosmolarity may be involved.
However, the constant progress and

improvement in agents, treatment para-
digms and dosing are already helping
some DED patients and are likely to be
applicable to more as this complex
disease becomes more well understood.

Conclusions

It is now well recognized that hyperos-
molarity and inflammation work inter-
dependently as key factors in some
forms of DED. Not only they can act
concomitantly on the ocular surface,
but one may also lead to the other.
Therefore, regardless of the initiating
cause of this multifaceted disease, a
self-sustained inflammatory response
can develop on the ocular surface that
can lead to chronic DED.

Over the years, several in vitro and
in vivo models have been developed to
get a deeper understanding of the DED
inflammation process, and they con-
tinue to be used to evaluate efficacy and
safety of new anti-inflammatory thera-
pies. Furthermore, progress in advanced
and powerful techniques in the identifi-
cation/detection of reliable inflamma-
tory biomarkers has allowed a better
assessment of inflammation in DED
patients. Identification and validation
of new inflammatory markers may not
only contribute to earlyDED diagnosis,
but also help with assessment of disease
severity, progression and response to
treatment. These biomarkers may also
allow identification of patients at risk of
disease progression to a more severe
stage, which may require different treat-
ments and disease management.

One current strategy in the develop-
ment of new treatments includes tar-
geting specific inflammatory effectors/
pathways to break the vicious circle of
DED and therefore prevent disease
chronicity and progression. The chal-
lenge to achieve a significant improve-
ment in the management of DED
explains the plethora of different com-
ponents being investigated as potential
anti-inflammatory treatments. To date,
this approach has produced promising
results from both experimental and
clinical trials that led to market
approval of CsA in both the United
States and in Europe.

It is certainly hoped that the prolific
ongoing research in the field of DED
inflammation will produce highly effec-
tive diagnostic and more specific ther-
apeutic advances that will benefit DED
patients in the coming years.
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